Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis
نویسندگان
چکیده
The efficient enzymatic saccharification of cellulose at low cellulase (protein) loadings continues to be a challenge for commercialization of a process for bioconversion of lignocellulose to ethanol. Currently, effective pretreatment followed by high enzyme loading is needed to overcome several substrate and enzyme factors that limit rapid and complete hydrolysis of the cellulosic fraction of biomass substrates. One of the major barriers faced by cellulase enzymes is their limited access to much of the cellulose that is buried within the highly ordered and tightly packed fibrillar architecture of the cellulose microfibrils. Rather than a sequential 'shaving' or 'planing' of the cellulose fibrils from the outside, it has been suggested that these inaccessible regions are disrupted or loosened by non-hydrolytic proteins, thereby increasing the cellulose surface area and making it more accessible to the cellulase enzyme complex. This initial stage in enzymatic saccharification of cellulose has been termed amorphogenesis. In this review, we describe the various amorphogenesis-inducing agents that have been suggested, and their possible role in enhancing the enzymatic hydrolysis of cellulose.
منابع مشابه
Use of substructure-specific carbohydrate binding modules to track changes in cellulose accessibility and surface morphology during the amorphogenesis step of enzymatic hydrolysis
BACKGROUND Cellulose amorphogenesis, described as the non-hydrolytic "opening up" or disruption of a cellulosic substrate, is becoming increasingly recognized as one of the key steps in the enzymatic deconstruction of cellulosic biomass when used as a feedstock for fuels and chemicals production. Although this process is thought to play a major role in facilitating hydrolysis, the lack of quant...
متن کاملEnhancing Enzymatic Hydrolysis of Cellulose by Ultrasonic Pretreatment
Slurries of rice-straw cellulose (obtained by delignification and removal of hemicelluloses from the powdered raw material) were subjected to ultrasonic waves at different intensities for various times (constant temperature). Susceptibility of the samples to cellulose-hydrolysis increased initially with pretreatment time, reaching a maximum or a constant level thereafter. Maximum glucose yi...
متن کاملEnzymatic Hydrolysis of Olive Industry Solid Waste into Glucose, the Precursor of Bioethanol
Olive industry solid waste (OISW) is a by-product generated in the process of olive oil extraction. It is a lignocellulosic material consisting of cellulose, hemicelluloses, lignin and other extractives. In this work, a process for hydrolyzing the OISW into its monomers glucose, the precursor of bioethanol was developed. The hydrolysis process involves two stages: in the first stage, the O...
متن کاملComparative Studies on Effect of Pretreatment of Rice Husk for Enzymatic Digestibility and Bioethanol Production
Three common pretreatment processes based on dilute sulfuric acid, dilute sodium hydroxide and heat treatment (autoclaving) followed by enzymatic hydrolysis were evaluated to provide comparative performance data. Among them, the best result was obtained when the pretreatment of rice husk was carried out with 3% of NaOH solution. The pretreatment of rice husk with NaOH substantially increased th...
متن کاملComparative study on chemical pretreatment (acid and ozone) methods for improving enzymatic digestibility of sugar cane bagasse
Sugarcane bagasse contains cellulose, lignin and hemicellulose, 39-42%, 20-25% and 25-27% respectively. So it is can be used as a sugar source in many processes. Lignin and hemicellulose must be removed before hydrolysis of cellulose. Several different pretreatment approaches have been studied. The purpose of this research is comparison of acid, ozone and combination of ozone-acid as pretreatme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2010